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Calling the Election

Last night the Republican Indiana primary was called in favor of the Donald after only 9% of votes were
reported. How does that work? A student asked, I looked into it, and it brought a tear to my already crying
eyes. This example is not related to correlation, but it is right after the midterm so we are taking time to
crystallize course concepts.

In good probability style let us start by declaring random variables. Let X be the total number of votes that
candidate one gets and let Y be the total number of votes that candidate two gets. In order to call an election
we want to calculate the probability P(X > Y). If that probability is large enough we call the election. First
let’s rearrange terms and see that it is a problem we can solve:

PX>Y)=P(X—Y >0)=P(Y —X <0)

Ok great. Now all we need is a distribution for X and Y and find the convolution of X and —Y. Since X and
Y are similar we can just focus on finding the distribution for one of them. Let’s look into X.

In a US election, a state is broken down into counties. It would be nice to think that all counties vote using
the same distribution, but alas that is too incorrect an assumption. So it goes. The simple way forward is to
declare a new random variable for each county X;. Now we can write an expression for X:

xX=YXx
i
Decomposition is the best isn’t it? Now we can think about just one county.

For each county I would like to work out what is the probability of a single person in that county voting for
candidate X. Check this out boss. Let V; be an indicator variable which is 1 if a voter in the county votes for
candidate one. We only have 9% of precincts reporting. Of those precincts a few will be from county i. What
we have are many samples of the distribution underlying V;.

Assume each reported vote Z; from county i is an IID sample of V;. Let n be the number of voters reported.
We can calculate the sample mean, Z; and the variance of the sample mean Var(Z;).

Z=y %4
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If the variance of the sample mean is small enough, we have enough voters in the precinct to include it. Since
the sample mean is an unbiased estimate of the true mean and the true mean of an indicator variable is the
probability of the underlying event:

PV) =EV] =Z

The story keeps getting better. Now for a given county i we have a probability of a candidate getting a single
vote from that county. Let m; be the expected number of voters in the county. If we assume that they are
voting independently the sum of votes, X; is a binomial with a moderate p and a gigantic n. Yes, you guessed
it, we can use the Normal approximation of the Binomial! We fit the mean and the variance of the binomial
and get a distribution for X;. Thus:

Xi ~ N(miZi,miZi(1—Z;))



You know what is so great about fitting a normal? The convolution of independent normals is very straight-
forward. Note that in real life they might not be more independent. In this case assuming independence is
going to make us more conservative in our estimate. Thus we have all the pieces, we just need to bring it on
home. So far we have been ignoring Y. Y is basically the same as X, but I am going to use different notation
for its sample variance of county i, W, to make it clear that that it is different:
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That last expression is something that we can calculate. Note that in all the sums we should only include
counties with low enough variance of the sample mean for both candidates. Another aside on this calculation
is that never assumes that all people vote, or that all voters vote for either candidate one or two. That lack of
assumption makes it a more realistic model.

Wham-blam-alakazam! (Is that a real term? It felt right). I really like this example. It brings together so
many concepts.

Correlation

We left off last class talking about covariance. Covariance was interesting because it was a quantitative mea-
surement of the relationship between two variables. Today we are going to extend that concept to correlation.
Correlation between two random variables, p(X,Y) is the covariance of the two variables normalized by the
variance of each variable. This normalization cancels the units out:

Cov(X,Y)

Py = O Var(Y)

Correlation measure linearity between X and Y.

p(X,Y)=1 Y = aX + b where a = 0,/ 0,
p(X,Y)= -1 Y =aX +b where a = —0, /0y
p(X,Y)=0 absence of linear relationship

If p(X,Y) =0 we say that X and Y are “uncorrelated.”

When people use the term correlation, they are actually referring to a specific type of correlation called “Pear-
son” correlation. It measures the degree to which there is a linear relationship between the two variables. An
alternative measure is “Spearman” correlation which has a formula almost identical to your regular corre-
lation score, with the exception that the underlying random variables are first transformed into their rank.
“Spearman” correlation is outside the scope of CS109.



